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About 5 years ago, the theory of
statistical decision was translated into
a theory of signal detection.2 Although
the translation was motivated by prob-
lems in radar, the detection theory that
resulted is a general theory for, like
the decision theory, it specifies an ideal
process. The generality of the theory
suggested to us that it might also be
relevant to the detection of signals by
human observers. Beyond this, we
were struck by several analogies be-
tween this description of ideal behavior
and various aspects of the perceptual
process. The detection theory seemed
to provide a framework for a realistic
description of the behavior of the
human observer in a variety of per-
ceptual tasks.

1 This paper is based upon Technical Re-
port No. 40, issued by the Electronic De-
fense Group of the University of Michigan
in 1955. The research was conducted in the
Vision Research Laboratory of the Univer-
sity of Michigan with support from the
United States Army Signal Corps and the
Naval Bureau of Ships. Our thanks are due
H. R. Blackwell and W. M. Kincaid for
their assistance in the research, and D. H.
Howes for suggestions concerning the pres-
entation of this material. This paper was
prepared in the Research Laboratory of
Electronics, Massachusetts Institute of Tech-
nology, with support from the Signal Corps,
Air Force (Operational Applications Lab-
oratory and Office of Scientific Research),
and Office of Naval Research. This is Tech-
nical Report No. ESD-TR-61-20.

2 For a formal treatment of statistical
decision theory, see Wald (1950) ; for a brief
and highly readable survey of the essentials,
see Bross (1953). Parallel accounts of the
detection theory may be found in Peterson,
Birdsall, and Fox (1954) and in Van Meter
and Middleton (1954).

The particular feature of the theory
that was of greatest interest to us was
the promise that it held of solving an
old problem in the field of psycho-
physics. This is the problem of con-
trolling or specifying the criterion that
the observer uses in making a percep-
tual judgment. The classical methods
of psychophysics make effective provi-
sion for only a single free parameter,
one that is associated with the sensi-
tivity of the observer. They contain
no analytical procedure for specifying
independently the observer's criterion.
These two aspects of performance are
confounded, for example, in an experi-
ment in which the dependent variable
is the intensity of the stimulus that is
required for a threshold response. The
present theory provides a quantitative
measure of the criterion. There is left,
as a result, a relatively pure measure
of sensitivity. The theory, therefore,
promised to be of value to the student
of personal and social processes in per-
ception as well as to the student of
sensory functions. A second feature
of the theory that attracted us is that
it is a normative theory. We believed
that having a standard with which to
compare the behavior of the human
observer would aid in the description
and in the interpretation of experi-
mental results, and would be fruitful
in suggesting new experiments.

This paper begins with a brief re-
view of the theory of statistical decision
and then presents a description of the
elements of the theory of signal detec-
tion appropriate to human observers.
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FIG. 1. The probability distributions for the dice game.

Following this, the results of some ex-
perimental tests of the applicability of
the theory to the detection of visual
signals are described.

The theory and some illustrative re-
sults of one experimental test of it were
briefly described in an earlier paper
(Tanner & Swets, 1954). The present
paper contains a more nearly adequate
description of the theory, a more com-
plete account of the first experiment,
and the results of four other experi-
ments. It brings together all of the
data collected to date in vision experi-
ments that bear directly on the value
of the theory.3

THE THEORY
Statistical Decision Theory

Consider the following game of
chance. Three dice are thrown. Two
of the dice are ordinary dice. The
third die is unusual in that on each of
three of its sides it has three spots,
whereas on its remaining three sides
it has no spots at all. You, as the

3 Reports of several applications of the
theory in audition experiments are available
in the literature; for a list of references, see
Tanner and Birdsall (19S8).

player of the game, do not observe the
throws of the dice. You are simply
informed, after each throw, of the total
number of spots showing on the three
dice. You are then asked to state
whether the third die, the unusual one,
showed a 3 or a 0. If you are correct
—that is, if you assert a 3 showed
when it did in fact, or if you assert a
0 showed when it did in fact—you win
a dollar. If you are incorrect—that is,
if you make either of the two possible
types of errors—-you lose a dollar.

How do you play the game? Cer-
tainly you will want a few minutes to
make some computations before you
begin. You will want to know the
probability of occurrence of each of the
possible totals 2 through 12 in the
event that the third die shows a 0, and
you will want to know the probability
of occurrence of each of the possible
totals 5 through 15 in the event that
the third die shows a 3. Let us ignore
the exact values of these probabilities,
and grant that the two probability dis-
tributions in question will look much
like those sketched in Figure 1.

Realizing that you will play the game
many times, you will want to establish
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a policy which defines the circum-
stances under which you will make
each of the two decisions. We can
think of this as a criterion or a cutoff
point along the axis representing the
total number of spots snowing on the
three dice. That is, you will want to
choose a number on this axis such that
whenever it is equaled or exceeded you
will state that a 3 showed on the third
die, and such that whenever the total
number of spots showing is less than
this number, you will state that a 0
showed on the third die. For the game
as described, with the a priori proba-
bilities of a 3 and a 0 equal, and with
equal values and costs associated with
the four possible decision outcomes, it
is intuitively clear that the optimal cut-
off point is that point where the two
curves cross. You will maximize your
winnings if you choose this point as
the cutoff point and adhere to it.

Now, what if the game is changed?
What, for example, if the third die has
three spots on five of its sides, and a 0
on only one? Certainly you will now
be more willing to state, following each
throw, that the third die showed a 3.
You will not, however, simply state
more often that a 3 occurred without
regard to the total showing on the three
dice. Rather, you will lower your cut-
off point: you will accept a smaller
total than before as representing a
throw in which the third die showed
a 3. Conversely, if the third die has
three spots on only one of its sides and
O's on five sides, you will do well to
raise your cutoff point—to require a
higher total than before for stating that
a 3 occurred.

Similarly, your behavior will change
if the values and costs associated with
the various decision outcomes are
changed. If it costs you 5 dollars
every time you state that a 3 showed
when in fact it did not, and if you win
5 dollars every time you state that a 0

showed when in fact it did (the other
value and the other cost in the game
remaining at one dollar), you will raise
your cutoff to a point somewhere above
the point where the two distributions
cross. Or if, instead, the premium is
placed on being correct when a 3 oc-
curred, rather than when a 0 occurred
as in the immediately preceding exam-
ple, you will assume a cutoff some-
where below the point where the two
distributions cross.

Again, your behavior will change if
the amount of overlap of the two dis-
tributions is changed. You will assume
a different cutoff than you did in the
game as first described if the three
sides of the third die showing spots
now show four spots rather than three.

This game is simply an example of
the type of situation for which the
theory of statistical decision was devel-
oped. It is intended only to recall the
frame of reference of this theory. Sta-
tistical decision theory—or the special
case of it which is relevant here, the
theory of testing statistical hypotheses
—specifies the optimal behavior in a
situation where one must choose be-
tween two alternative statistical hy-
potheses on the basis of an observed
event. In particular, it specifies the
optimal cutoff, along the continuum on
which the observed events are ar-
ranged, as a function of (a) the a
priori probabilities of the two hypothe-
ses, (&) the values and costs associated
with the various decision outcomes,
and (c) the amount of overlap of
the distributions that constitute the
hypotheses.

According to the mathematical the-
ory of signal detectability, the problem
of detecting signals that are weak rela-
tive to the background of interference
is like the one faced by the player of
our dice game. In short, the detection
problem is a problem in statistical deci-
sion ; it requires testing statistical hy-
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O b s e r v a l i o n ( x )

FIG. 2. The probability density functions of
noise and signal plus noise.

potheses. In the theory of signal de-
tectability, this analogy is developed in
terms of an idealized observer. It is
our thesis that this conception of the
detection process may apply to the
human observer as well. The next
several pages present an analysis of
the detection process that will make
the bases for this reasoning apparent.4

Fundamental Detection Problem
In the fundamental detection prob-

lem, an observation is made of events
occurring in a fixed interval of time,
and a decision is made, based on this
observation, whether the interval con-
tained only the background interference
or a signal as well. The interference,
which is random, we shall refer to as
noise and denote as N; the other alter-
native we shall term signal plus noise,

4 It is to be expected that a theory recog-
nized as having a potential application in
psychophysics, although developed in another
context, will be similar in many respects to
previous conceptions in psychophysics. Al-
though we shall not, in general, discuss
explicitly these similarities, the strong re-
lationship between many of the ideas pre-
sented in the following and Thurstone's
earlier work on the scaling of judgments
should be noted (see Thurstone, 1927a,
1927b). The present theory also has much
in common with the recent work of Smith
and Wilson (1953) and of Munson and
Karlin (1956). Of course, for a new theory
to arouse interest, it must also differ in some
significant aspects from previous theories—•
these differences will become apparent as we
proceed.

SN. In the fundamental problem, only
these two alternatives exist—noise is
always present, whereas the signal may
or may not be present during a speci-
fied observation interval. Actually, the
observer, who has advance knowledge
of the ensemble of signals to be pre-
sented, says either "yes, a signal was
present" or "no, no signal was present"
following each observation. In the ex-
periments reported below, the signal
consisted of a small spot of light flashed
briefly in a known location on a uni-
formly illuminated background. It is
important to note that the signal is al-
ways observed in a background of
noise; some, as in the present case,
may be introduced by the experimenter
or by the external situation, but some
is inherent in the sensory processes.

Representation of Sensory Information
We shall, in the following, use the

term observation to refer to the sensory
datum on which the decision is based.
We assume that this observation may
be represented as varying continuously
along a single dimension. Although
there is no need to be concrete, it may
be helpful to think of the observation
as some measure of neural activity,
perhaps as the number of impulses ar-
riving at a given point in the cortex
within a given time. We assume fur-
ther that any observation may arise,
with specific probabilities, either from
noise alone or from signal plus noise.
We may portray these assumptions
graphically, for a signal of a given am-
plitude, as in Figure 2. The observa-
tion is labeled x and plotted on the
abscissa. The left-hand distribution,
labeled f y ( x ) , represents the proba-
bility density that x will result given
the occurrence of noise alone. The
right-hand distribution, fsy(^), is the
probability density function of x given
the occurrence of signal plus noise.
(Probability density functions are used,
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rather than probability functions, since
x is assumed to be continuous.) Since
the observations will tend to be of
greater magnitude when a signal is pre-
sented, the mean of the SN distribution
will be greater than the mean of the
N distribution. In general, the greater
the amplitude of the signal, the greater
will be the separation of these means.

Observation as a Value of Likelihood
Ratio

It will be well to question at this
point our assumption that the observa-
tion may be represented along a single
axis. Can we, without serious viola-
tion, regard the observation as uni-
dimensional, in spite of the fact that
the response of the visual system prob-
ably has many dimensions? The an-
swer to this question will involve some
concepts that are basic to the theory.

One reasonable answer is that when
the signal and interference are alike in
character, only the magnitude of the
total response of the receiving system
is available as an indicator of signal
existence. Consequently, no matter
how complex the sensory information
is in fact, the observations may be rep-
resented in theory as having a single
dimension. Although this answer is
quite acceptable when concerned only
with the visual case, we prefer to ad-
vance a different answer, one that is
applicable also to audition experiments,
where, for example, the signal may be
a segment of a sinusoid presented in a
background of white noise.

So let us assume that the response
of the sensory system does have several
dimensions, and proceed to represent
it as a point in an w-dimensional space.
Call this point 31. For every such point
in this space there is some probability
density that it resulted from noise
alone, f#(;y), and, similarly, some
probability density that it was due to
signal plus noise, isy(y). Therefore,

there exists a likelihood ratio for each
point in the space, X(y) =fsjr(y)/
fy(y), expressing the likelihood that
the point y arose from SN relative to
the likelihood that it arose from N.
Since any point in the space, i.e., any
sensory datum, may be thus repre-
sented as a real, nonzero number, these
points may be considered to lie along
a single axis. We may then, if we
choose, identify the observation x with
A(y) ; the decision axis becomes like-
lihood ratio.5

Having established that we may
identify the observation x with \(y),
let us note that we may equally well
identify x with any monotonic trans-
formation of A(y) . It can be shown
that we lose nothing by distorting the
linear continuum as long as order is
maintained. As a matter of fact we
may gain if, in particular, we identify
x with some transformation of A.(y)
that results in Gaussian density func-
tions on x. We have assumed the
existence of such a transformation in
the representation of the density func-
tions, isx(x) and f»(^), in Figure 2.
We shall see shortly that the assump-
tion of normality simplifies the problem
greatly. We shall also see that this
assumption is subject to experimental
test. A further assumption incorpo-
rated into the picture of Figure 2, one
made quite tentatively, is that the two
density functions are of equal variance.
This is equivalent to the assumption
that the SN function is a simple trans-
lation of the N function, or that adding
a signal to the noise merely adds a
constant to the N function. The re-

5 Thus the assumption of a unidimensional
decision axis is independent of the character
of the signal and noise. Rather, it depends
upon the fact that just two decision alterna-
tives are considered. More generally, it can
be shown that the number of dimensions
required to represent the observation is
M — 1, where M is the number of decision
alternatives considered by the observer.
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suits of a test of this assumption are
also described below.

To summarize the last few para-
graphs, we have assumed that an ob-
servation may be characterized by a
value of likelihood ratio, A.(y), i.e., the
likelihood that the response of the sen-
sory system y arose from SN relative
to the likelihood that it arose from N.
This permits us to view the observa-
tions as lying along a single axis. We
then assumed the existence of a par-
ticular transformation of A(y) such that
on the resulting variable, x, the density
functions are normal. We regard the
observer as basing his decisions on the
variable x.

Definition of the Criterion
If the representation depicted in Fig-

ure 2 is realistic, then the problem
posed for an observer attempting to
detect signals in noise is indeed similar
to the one faced by the player of our
dice game. On the basis of an ob-
servation, one that varies only in mag-
nitude, he must decide between two
alternative hypotheses. He must de-
cide from which hypothesis the ob-
servation resulted; he must state that
the observation is a member of the one
distribution or the other. As did the
player of the dice game, the observer
must establish a policy which defines
the circumstances under which the ob-
servation will be regarded as resulting
from each of the two possible events.
He establishes a criterion, a cutoff xc
on the continuum of observations, to
which he can relate any given observa-
tion Xi. If he finds for the «th ob-
servation, xt, that Xi > xc, he says
"yes"; if xt < xc, he says "no." Since
the observer is assumed to be capable
of locating a criterion at any point
along the continuum of observations, it
is of interest to examine the various
factors that, according to the theory,
will influence his choice of a particular

criterion. To do so requires some ad-
ditional notation.

In the language of statistical decision
theory the observer chooses a subset
of all of the observations, namely the
Critical Region A, such that an ob-
servation in this subset leads him to
accept the Hypothesis SN, to say that
a signal was present. All other ob-
servations are in the complementary
Subset B; these lead to rejection of
the Hypothesis SN, or, equivalently,
since the two hypotheses, are mutually
exclusive and exhaustive, to the ac-
ceptance of the Hypothesis N. The
Critical Region A, with reference to
Figure 2, consists of the values of x
to the right of some criterion value xc.

As in the case of the dice game, a
decision will have one of four out-
comes: the observer may say "yes" or
"no" and may in either case be correct
or incorrect. The decision outcome, in
other words, may be a hit (SN-A, the
joint occurrence of the Hypothesis SN
and an observation in the Region A~),
a miss (SN-B), a correct rejection
(N-B), or a false alarm (N-A). If
the a priori probability of signal occur-
rence and the parameters of the distri-
butions of Figure 2 are fixed, the
choice of a criterion value xc completely
determines the probability of each of
these outcomes.

Clearly, the four probabilities are
interdependent. For example, an in-
crease in the probability of a hit,
p(SN-A), can be achieved only by
accepting an increase in the probability
of a false alarm, p(N-A), and de-
creases in the other probabilities,
p (SN • B) and p (TV • B). Thus a given
criterion yields a particular balance
among the probabilities of the four pos-
sible outcomes; conversely, the balance
desired by an observer in any instance
will determine the optimal location of
his criterion. Now the observer may
desire the balance that maximizes the
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expected value of a decision in a situa-
tion where the four possible outcomes
of a decision have individual values,
as did the player of the dice game. In
this case, the location of the best cri-
terion is determined by the same pa-
rameters that determined it in the dice
game. The observer, however, may de-
sire a balance that maximizes some
other quantity—i.e., a balance that is
optimum according to some other defi-
nition of optimum—in which case a
different criterion will be appropriate.
He may, for example, want to maxi-
mize p(SN-A) while satisfying a re-
striction on p(N-A), as we typically
do when as experimenters we assume
an .05 or .01 level of confidence. Al-
ternatively, he may want to maximize
the number of correct decisions. Again,
he may prefer a criterion that will
maximize the reduction in uncertainty
in the Shannon (1948) sense.

In statistical decision theory, and in
the theory of signal detectability, the
optimal criterion under each of these
definitions of optimum is specified in
terms of the likelihood ratio. That is
to say, it can be shown that, if we de-
fine the observation in terms of the
likelihood ratio, A.(#) = fstf(#)/fff(.*0,
then the optimal criterion can always
be specified by some value JB of A(JF).
In other words, the Critical Region A
that corresponds to the criterion con-
tains all observations with likelihood
ratio greater than or equal to /?, and
none of those with likelihood ratio less
than /3.

We shall illustrate this manner of
specifying the optimal criterion for just
one of the definitions of optimum pro-
posed above, namely, the maximization
of the total expected value of a decision
in a situation where the four possible
outcomes of a decision have individual
values associated with them. This is
the definition of optimum that we as-
sumed in the dice game. For this pur-

pose we shall need the concept of con-
ditional probability as opposed to the
probability of joint occurrence intro-
duced above. It should be stated that
conditional probabilities will have a
place in our discussion beyond their use
in this illustration; the ones we shall
introduce are, as a matter of fact, the
fundamental quantities in evaluating
the observer's performance.

There are two conditional probabili-
ties of principal interest. These are
the conditional probabilities of the ob-
server saying "yes" : psx(A), the prob-
ability of a Yes decision conditional
upon, or given, the occurrence of a
signal, and pN(A), the probability of
a Yes decision given the occurrence
of noise alone. These two are suffi-
cient, for the other two are simply their
complements: PHN(B) — \ — pSN(A)
and ps(B) - 1 - pN(A). The condi-
tional and joint probabilities are related
as follows:

PN(A) =

p(SN-A)
p(SN)

p ( N - A )
p(N)

[1]

where: p (SN) is the a priori probability
of signal occurrence and p(N)=\ —
p(SN) is the a priori probability of occur-
rence of noise alone.

Equation 1 makes apparent the con-
venience of using conditional rather
than joint probabilities—conditional
probabilities are independent of the a
priori probability of occurrence of the
signal and of noise alone. With refer-
ence to Figure 2, we may define
PSN(A), or the conditional probability
of a hit, as the integral of iaN(x) over
the Critical Region A, and pN(A), the
conditional probability of a false alarm,
as the integral of f#(#) over A. That
is, pN(A) and pan (A) represent, re-
spectively, the areas under the two
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curves of Figure 2 to the right of some
criterion value of x.

To pursue our illustration of how an
optimal criterion may be specified by a
critical value of likelihood ratio ft, let
us note that the expected value of a
decision (denoted EV) is defined in
statistical decision theory as the sum,
over the potential outcomes of a deci-
sion, of the products of probability of
outcome and the desirability of out-
come. Thus, using the notation V for
positive individual values and K for
costs or negative individual values, we
have the following equation:

EV = VsN.Ap(SN-A)
+ VN.Bp(N-B)
- K3N.Bp(SN-B)

-KN.Ap(N-A) [2]

Now if a priori and conditional
probabilities are substituted for the
joint probabilities in Equation 2 fol-
lowing Equation 1, for example,
p(SN)psN(A) for p(SN-A), then
collecting terms yields the result that
maximizing EV is equivalent to maxi-
mizing :

PSN(A) — 0pff(A) [3]
where

0 P(N) (VN.B + KN.A) ,_,_,

It can be shown that this value of ft
is equal to the value of likelihood ratio,
X(x], that corresponds to the optimal
criterion. From Equation 3 it may be
seen that the value ft simply weights
the hits and false alarms, and from
Equation 4 we see that ft is determined
by the a priori probabilities of occur-
rence of signal and of noise alone and
by the values associated with the indi-
vidual decision outcomes. It should
be noted that Equation 3 applies to all
definitions of optimum. Equation 4

shows the determinants of ft in only
the special case of the expected-value
definition of optimum.

Return for a moment to Figure 2,
keeping in mind the result that ft is a.
critical value of \(x) = ias(x)/is(x).
It should be clear that the optimal cut-
off xc along the x axis is at the point
on this axis where the ratio of the ordi-
nate value of ias(x) to the ordinate
value of ifi(x) is a certain number,
namely ft. In the symmetrical case,
where the two a priori probabilities are
equal and the four individual values are
equal, ft = 1 and the optimal value of
xc is the point where iss(x) — fw(^),
where the two curves cross. If the
four values are equal but p(SN) =
5/6 and p (N) = 1/6, another case de-
scribed in connection with the dice
game, then ft = 1/5 and the optimal
value of xc is shifted a certain distance
to the left. This shift may be seen
intuitively to be in the proper direction
—a higher value of p ( S N ) should lead
to a greater willingness to accept the
Hypothesis SN, i.e., a more lenient cut-
off. To consider one more example
from the dice game, if p(SN) = p ( N )
= 0.5, if VN.S and KN.A. are set at 5
dollars and VBN-A and Kas.B are equal
to 1 dollar, then ft = 5 and the optimal
value of xc shifts a certain distance to
the right. Again intuitively, if it is
more important to be correct when the
Hypothesis N is true, a high, or strict,
criterion should be adopted.

In any case, ft specifies the optimal
weighting of hits relative to false
alarms: xe should always be located at
the point on the x axis corresponding
to ft. As we pointed out in discussing
the dice game, just where this value of
x0 will be with reference to the x axis
depends not only upon the a priori
probabilities and the values but also
upon the overlap of the two density
functions, in short, upon the signal
strength. We shall define a measure
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of signal strength within the next few
pages. For now, it is important to note
that for any detection goal to which the
observer may subscribe, and for any
set of parameters that may characterize
a detection situation (such as a priori
probabilities and values associated with
decision outcomes), the optimal crite-
rion may be specified in terms of a
single number, /?, a critical value of
likelihood ratio."

Receiver-Operating-Characteristic
Whatever criterion the observer ac-

tually uses, even if it is not one of the
optimal criteria, can also be described
by a single number, by some value of
likelihood ratio. Let us proceed to a
consideration of how the observer's
performance may be evaluated with re-
spect to the location of his criterion,
and, at the same time we shall see how
his performance may be evaluated with
respect to his sensory capabilities.

As we have noted, the fundamental
quantities in the evaluation of per-
formance are p N ( A } and p8N(A}, these
quantities representing, respectively,
the areas under the two curves of Fig-
ure 2 to the right of some criterion
value of x. If we set up a graph of
psx(A) versus pn(A) and trace on it
the curve resulting as we move the
decision criterion along the decision

6 We have reached a point in the discus-
sion where we can justify the statement
made earlier that the decision axis may be
equally well regarded as likelihood ratio or
as any monotonic transformation of likeli-
hood ratio. Any distortion of the linear
continuum of likelihood ratio, that maintains
order, is equivalent to likelihood ratio in
terms of determining a criterion. The de-
cions made are the same whether the
criterion is set at likelihood ratio equal to
§ or at the value that corresponds to /3 of
some new variable. To illustrate, if a
criterion leads to a Yes response when-
ever \(y)>2, if x= [\(y)Y the decisions
will be the same if the observer says "yes"
whenever x > 4.

FIG. 3. The receiver-operating-character-
istic curves. (These curves show pan (A)
vs. ps(A) with d' as the parameter. They
are based on the assumptions that the prob-
ability density functions, f»O) and f «»(#),
are normal and of equal variance.)

axis of Figure 2, we sketch one of the
arcs shown in Figure 3. Ignore, for
a moment, all but one of these arcs.
If the decision criterion is set way at
the left in Figure 2, we obtain a point
in the upper right-hand corner of Fig-
ure 3: both psn(A) and p y ( A ) are
unity. If the criterion is set at the
right end of the decision axis in Figure
2, the point at the other extreme of
Figure 3, pan (A} — pN(A) = 0, is ob-
tained. In between these extremes lie
the criterion values of more practical
interest. It should be noted that the
exact form of the curve shown in Fig-
ure 3 is not the only form which might
result, but it is the form which will
result if the observer chooses a crite-
rion in terms of likelihood ratio, and
the probability density functions are
normal and of equal variance.

This curve is a form of the operating
characteristic as it is known in statis-
tics; in the context of the detection
problem it is usually referred to as
the receiver-operating-characteristic, or
ROC, curve. The optimal "operating
level" may be seen from Equation 3 to
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be at the point of the ROC curve where
its slope is /?. That is, the expression
Pair (A) — /3pN (A) defines a utility line
of slope /?, and the point of tangency
of this line to the ROC curve is the
optimal operating level. Thus the
theory specifies the appropriate hit
probability and false alarm probability
for any definition of optimum and any
set of parameters characterizing the
detection situation.

It is now apparent how the observ-
er's choice of a criterion in a given
experiment may be indexed. The pro-
portions obtained in an experiment are
used as estimates of the probabilities,
px(A) and pan (A} ; thus, the observ-
er's behavior yields a point on an ROC
curve. The slope of the curve at this
point corresponds to the value of like-
lihood ratio at which he has located
his criterion. Thus we work backward
from the ROC curve to infer the cri-
terion that is employed by the observer.

There is, of course, a family of ROC
curves, as shown in Figure 3, a given
curve corresponding to a given separa-
tion between the means of the density
functions iu(x~) and fay(.*•). The pa-
rameter of these curves has been called
d'', where d' is defined as the difference
between the means of the two density
functions expressed in terms of their
standard deviation, i.e.:

d' = — MfN (*> [5]

Since the separation between the means
of the two density functions is a func-
tion of signal amplitude, d' is an index
of the detectability of a given signal
for a given observer.

Recalling our assumptions that the
density functions iy(x) and !«»(#) are
normal and of equal variance, we may
see from Equation 5 that the quantity
denoted d' is simply the familiar nor-
mal deviate, or x/a measure. From the

pair of values px(A) and ps^(A) that
are obtained experimentally, one may
proceed to a published table of areas
under the normal curve to determine
a value of d'. A simpler computational
procedure is achieved by plotting the
points [pir(A'), PSN(A)} on graph
paper having a probability scale and a
normal deviate scale on both axes.

We see now that the four-fold table
of the responses that are made to a
particular stimulus may be treated as
having two independent parameters—
the experiment yields measures of two
independent aspects of the observer's
performance. The variable d' is a
measure of the observer's sensory capa-
bilities, or of the effective signal
strength. This may be thought of as
the object of interest in classical psy-
chophysics. The criterion /3 that is
employed by the observer, which deter-
mines the ps(A) and pSN(A) for some
fixed d', reflects the effect of variables
which have been variously called the
set, attitude, or motives of the observer.
It is the ability to distinguish between
these two aspects of detection perform-
ance that comprises one of the main
advantages of the theory proposed here.
We have noted that these two aspects
of behavior are confounded in an ex-
periment in which the dependent varia-
ble is the intensity of the signal that is
required for a threshold response.

Relationship oj d' to Signal Energy
We have seen that the optimal value

of the criterion, /3, can be computed.
In certain instances, an optimal value
of d', i.e., the sensitivity of the mathe-
matically ideal device, can also be com-
puted. If, for example, the exact wave
form and starting time of the signal
are determinable, as in the case of an
auditory signal, then the optimal value
of d' is equal to ^2E/N0, where E is
the signal energy and N0 is the noise
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power in a one-cycle band (Peterson,
Birdsall, & Fox, 1954). A specifica-
tion of the optimal value of d' for
visual signals has been developed very
recently.7 Although we shall not elabo-
rate the point in this paper, it is worth
noting that an empirical index of de-
tectability may be compared with ideal
detectability, just as observed and opti-
mal indices of decision criteria may be
compared. The ratio of the squares of
the two detectability indices has been
taken as a measure of the observer's
sensory efficiency. This measure has
demonstrated its usefulness in the
study of several problems in audition
(Tanner & Birdsall, 1958).

Use of Ideal Descriptions as Models
It might be worthwhile to describe

at this point some of the reasons for
the emphasis placed here on optimal
measures, and, indeed, the reasons for
the general enterprise of considering a
theory of ideal behavior as a model for
studies of real behavior.8 In view of
the deviations from any ideal which are
bound to characterize real organisms,
it might appear at first glance that any
deductions based on ideal premises
could have no more than academic in-
terest. We do not think this is the
case. In any study, it is desirable to
specify rigorously the factors pertinent
to the study. Ideal conditions generally
involve few variables and permit these
to be described in simple terms. Hav-
ing identified the performance to be
expected under ideal conditions, it is
possible to extend the model to include
the additional variables associated with
real organisms. The ideal perform-
ance, in other words, constitutes a con-
venient base from which to explore the

7 W. P. Tanner, Jr. & R. C. Jones, per-
sonal communication, November 1959.

8 The discussion immediately following is,
in part, a paraphrase of one in Horton
(1957).

complex operation of a real organism.
In certain cases, as in the problem

at hand, values characteristic of ideal
conditions may actually approximate
very closely those characteristics of the
organism under study. The problem
then becomes one of changing the ideal
model in some particular so that it is
slightly less than ideal. This is usually
accomplished by depriving the ideal
device of some particular function.
This method of attack has been found
to generate useful hypotheses for fur-
ther studies. Thus, whereas it is not
expected that the human observer and
the ideal detection device will behave
identically, the emphasis in early stud-
ies is on similarities. If the differences
are small, one may rule out entire
classes of alternative models, and re-
gard the model in question as a useful
tool in further studies. Proceeding on
this assumption, one may then in later
studies emphasize the differences, the
form and extent of the differences sug-
gesting how the ideal model may be
modified in the direction of reality.

Alternative Conceptions of the
Detection Process

The earliest studies that were under-
taken to test the applicability of the
decision model to human observers
were quite naturally oriented toward
determining its value relative to exist-
ing psychophysical theory. As a re-
sult, some of the data presented below
are meaningful only with respect to
differences in the predictions based
upon different theories. We shall,
therefore, briefly consider alternative
theories of the detection process.

Although it is difficult to specify with
precision the alternative theories of de-
tection, it is clear that they generally
involve the concept of the threshold in
an important way. The development
of the threshold concept is fairly ob-
scure. It is differently conceived by
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different people, and few popular
usages of the concept benefit from ex-
plicit statement. One respect, how-
ever, in which the meaning of the
threshold concept is entirely clear is its
assertion of a lower limit on sensitivity.
As we have just seen, the decision
model does not include such a boun-
dary. The decision model specifies no
lower bound on the location of the
criterion along the continuous axis of
sensory inputs. Further, it implies that
any displacement of the mean of lay(.v)
from the mean of iy(x), no matter how
small, will result in a greater value of
PSN(A) than pa (A), irrespective of the
location of the criterion.

To permit experimental comparison
of decision theory and threshold theory,
we shall consider a special version of
threshold theory (Blackwell, 1953).
Although it is a special version, we
believe it retains the essence of the
threshold concept. In this version, the
threshold is described in the same
terms that are used in the description
of decision theory. It is regarded as
a cutoff on the continuum of observa-
tions (see Figure 2) with a fixed loca-
tion, with values of x above the cutoff
always evoking a positive response, and
with discrimination impossible among
values of x below the cutoff. This de-
scription of a threshold in terms of a

\

\\
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FIG. 4. The relationship between d' and
ps(A) at threshold.

fixed cutoff and a stimulus effect that
varies randomly, it will be noted, is
entirely equivalent to the more common
description in terms of a randomly
varying cutoff and a fixed stimulus ef-
fect. There are several reasons for
assuming that the hypothetical thresh-
old cutoff is located quite high relative
to the density function £#(#), say at
approximately +3o- from the mean of
tv (.*•). We shall compare our data
with the predictions of such a "high
threshold" theory, and shall indicate
their relationship to predictions from a
theory assuming a lower threshold.
We shall, in particular, ask how low a
threshold cutoff would have to be to
be consistent with the reported data.
It may be noted that if a high threshold
exists, the observer will be incapable
of ordering values of x likely to result
from noise alone, and hence will be in-
capable of varying his criterion over
a significant range.

If a threshold exists that is rarely
exceeded by noise alone, this fact will
be immediately apparent from the ROC
curves (see Figure 3) that are obtained
experimentally. It can be shown that
the ROC curves in this case are
straight lines from points on the left-
hand vertical axis—pay (A)—to the
upper right-hand corner of the plot.
These straight line curves represent the
implication of a high threshold theory
that an increase in pir(A') must be ef-
fected by responding "yes" to a random
selection of observations that fail to
reach the threshold, rather than by a
judicious selection of observations, i.e.,
a lower criterion level. If we follow
the usual procedure of regarding the
stimulus threshold as the signal inten-
sity yielding a value of psy(A) —0,5
for py(A) = 0.0, then an appreciation
of the relationship between d' and
p l f ( A ) at threshold may be gained by
visualizing a straight line in Figure 3
from this point to the upper right-hand
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corner. If we note which of the ROC
curves drawn in Figure 3 are inter-
sected by the visualized line, we see
that the threshold decreases with in-
creasing ps(A). For example, a re-
sponse procedure resulting in a px(A)
— 0.02 requires a signal of d' = 2.0 to
reach the threshold, whereas a response
procedure yielding a. pN(A) — 0.98 re-
quires a signal of d' < 0.5 to reach the
threshold. A graph showing what
threshold would be calculated as a func-
tion of ps(A) is plotted in Figure 4.
The calculated threshold is a strictly
monotonic function of p$(A) ranging
from infinity to zero.

The fundamental difference between
the threshold theory we are considering
and decision theory lies in their treat-
ment of false alarm responses. Accord-
ing to the threshold theory, these re-
sponses represent guesses determined
by nonsensory factors; i.e, pn(A} is
independent of the cutoff which is as-
sumed to have a fixed location. Deci-
sion theory assumes, on the other hand,
that ps (A) varies with the temporary
position of a cutoff under the observer's
control; that false alarm responses
arise for valid sensory reasons, and
that therefore a simple correction will
not eliminate their effect on PSN(A).
A similar implication of Figure 4 that
should be noted is that reliable esti-
mates of PSN(A) or of the stimulus
threshold are not guaranteed by simply
training the observer to maintain a low,
constant value of pN(A}. Since ex-
treme probabilities cannot be estimated
with reliability, the criterion may vary
from session to session with the varia-
tion having no direct reflection in the
data. Certainly, false alarm rates of
0.01, 0.001, and 0.0001, are not dis-
criminable in an experimentally feasi-
ble number of observations; the differ-
ences in the calculated values of the
threshold associated with these different
values of px(A) may be seen from

Figure 4 to be sizeable. The experi-
ments reported in the following were
designed, in large measure, to clarify
the relationship that exists between
PN(A) and pSN(A), to show whether
or not the observer is capable of con-
trolling the location of his criterion for
a Yes response.

SOME EXPERIMENTS
Five experiments are reported in the

following. They are the first experi-
ments that were undertaken to test the
applicability of decision theory to psy-
chophysical tasks, and it must be em-
phasized that they were intended to
explore only the general relationships
specified in the theory. We shall refer
also to more recent experiments con-
ducted within the framework of deci-
sion theory. The later experiments,
although not focused as directly on
testing the validity of the theory, sup-
port the principal thesis of this paper.

The experiments reported here are
devoted to answering the two principal
questions suggested by a consideration
of decision theory. The first of these
may be stated in this way: is sensory
information (or the decision axis) con-
tinuous, i.e., is the observer capable
of discriminating among observations
likely to result from noise alone ? The
alternative we consider is that there
exists a threshold cut, on the decision
axis, that is unlikely to be exceeded by
observations resulting from noise, and
below which discrimination among ob-
servations is impossible. The second
question has two parts: is the observer
capable of using different criteria, and,
if so, does he change his criterion ap-
propriately when the variables that we
expect will determine his criterion
(probabilities, values, and costs) are
changed ?

Three of the five experiments to be
described pose for the observer what
we have called the fundamental detec-
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tion problem, the problem that occupied
our attention throughout the theoretical
discussion. Of these, two test the ob-
server's ability to use the criterion that
maximizes the expected value of a de-
cision. The a priori probability of a
signal occurrence and the individual
values associated with the four possible
decision outcomes are varied systemati-
cally, in order to determine the range
over which the observer can vary his
criterion and the form of the resultant
ROC curve. A third experiment tests
the observer's ability to maximize the
proportion of hits while satisfying a
restriction on the proportion of false
alarms. This experiment is largely con-
cerned with the degree of precision
with which the observer can locate a
criterion.

The remaining two experiments dif-
fer in that the tasks they present to the
observer do not require him to estab-
lish a criterion, that is, they do not re-
quire a Yes or No response. They
test certain implications of decision
theory that we have not yet treated
explicitly, but they will be seen to fol-
low very directly from the theory and
to contribute significantly to an evalua-
tion of it. In one of these the observer
is asked to report after each observa-
tion interval his subjective probability
that the signal existed during the in-
terval. This response is a familiar one;
it is essentially a rating or a judgment
of confidence. The report of "a poste-
riori probability of signal existence,"
as it is termed in detection theory, may
be regarded as reflecting the likelihood
ratio of the observation, This case is
of interest since an estimate of likeli-
hood ratio preserves more of the in-
formation contained in the observation
than does a report merely that the like-
lihood ratio fell above or below a criti-
cal value. We shall see that it is also
possible to construct the ROC curve
from this type of response.

The other experiment not requiring
a criterion employs what has been
termed the temporal forced-choice
method of response. On each trial a
signal is presented in exactly one of
M temporal intervals, and the observer
states in which interval he believes the
signal occurred. The optimal proce-
dure for the observer to follow in this
case, if he is to maximize the proba-
bility of a correct response, is to make
an observation x in each interval and
to choose the interval having the great-
est value of x associated with it. Since
decision theory specifies how the pro-
portion of correct responses obtained
with the forced-choice method is re-
lated to the detectability index d', the
internal consistency of the theory may
be evaluated. That is to say, if the
observer follows the optimal procedure,
then the estimate of the detectability of
a signal of a given strength that is
based on forced-choice data will be
comparable to that based on yes-no
data. The forced-choice method may
also be used to make a strong test of
a fundamental assumption of decision
theory, namely, that sensory informa-
tion is continuous, or that sensory in-
formation does not exhibit a threshold
cutoff. For an experiment requiring
the observer to rank the n intervals
according to their likelihood of contain-
ing the signal, the continuity and
threshold assumptions lead to very dif-
ferent predictions concerning the prob-
ability that an interval ranked other
than first will be the correct interval.

All of the experiments reported in
the following employed a circular sig-
nal with a diameter of 30 minutes of
visual angle and a duration of %,>o
of a second. The signal was presented
on a large uniformly illuminated back-
ground having a luminance of 10 foot-
lamberts. Details of the apparatus have
been presented elsewhere (Blackwell,
Pritchard, & Ohmart, 1954).
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Maximising the Expected Value of a
Decision-—An Experimental Analysis

A direct test of the decision model
is achieved in an experiment in which
the a priori probability of signal occur-
rence or the values of the decision out-
comes, or both, are varied from one
group of observations to another-—in
short, in which ft (Equations 3 and 4)
assumes different values. The ob-
server, in order to maximize his ex-
pected value, or his payoff, must vary
his willingness to make a Yes re-
sponse, in accordance with the change
in /?. Variations in this respect will
be indicated by the proportion of false
alarms, py(A). The point of interest
is how PSN(A), the proportion of hits,
varies with changes in pN(A), i.e., in
the form of the observer's ROC curve.
If the experimental values of py(A)
reflect the location of the observer's
criterion, if the observer responds on
the basis of the likelihood ratio of the
observation, and if the density func-
tions (Figure 2) are normal and of
equal variance, the ROC curve of Fig-
ure 3 will result. If, on the other hand,
the location of the criterion is fixed in
such a position that it is rarely ex-
ceeded by noise alone, then the result-
ing ROC curve will be a straight line,
as we have indicated above. We shall
examine some empirical ROC curves
with this distinction in mind.

This experiment can be made to
yield another and, in one sense, a
stronger test of these two hypotheses,
by employing several values of signal
strength within a single group of ob-
servations, i.e., while a given set of
probabilities and values are in effect.
For in this case stimulus thresholds
can be calculated, and correlational
techniques can be used to determine
whether the calculated threshold is de-
pendent upon pir(A) as predicted by
decision theory, or independent of

as predicted by what we have
termed the high threshold theory. We
will grant that presenting more than
one value of signal strength, within a
single group of observations to which
fixed probabilities and values apply, is
not, conceptually, the simplest experi-
ment that could have been performed
to test our hypotheses. Nevertheless,
a little reflection will show that this
experimental procedure is entirely le-
gitimate from any of our present points
of view. We simply associate several
values of psy(A) with a given value
of pN(A), and thereby obtain at once
a point on each of several ROC curves
and an estimate of the stimulus thresh-
old that is associated with that value
o f p N ( A ) .

First Expected-Value Experiment.
The first of the two expected-value
experiments that were performed em-
ployed four values of signal strength.

Three observers, after considerable prac-
tice, served in 16 2-hour sessions. In each
session, signals at four levels of intensity
(0.44, 0.69, 0.92, and 1.20 foot-lamberts)
were presented along with a "blank" or "no-
signal" presentation. The order of presen-
tation was random within a restriction placed
upon the total number of occurrences of each
signal intensity and the blank in a given
session. Each of the signal intensities oc-
curred equally often within a session. The
proportion of trials on which a signal (of
any intensity) was presented, p(SN), was
either 0.80 or 0.40 in the various sessions.
In all, there were 300 presentations in each
session—six blocks of SO presentations, sepa-
rated by rest periods. Thus each estimate
of ps(A) is based on either 60 or 180 ob-
servations, and each estimate of pan (A) is
based on 30 or 60 observations, depending
upon p(SN).

In the first four sessions, no values were
associated with the various decision out-
comes. For the first and fourth sessions the
observers were informed that p(SN) = Q.&Q
and, for the second and third sessions, that
p(SN)=OAO. The average value of ps(A)
obtained in the sessions with p(SN) = Q.&0
was 0.43, and, in the sessions with p(SN) =
0.40, it was 0.15—indicating that the ob-
server's willingness to make a Yes response
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FIG. 5. Empirical receiver-operating-
characteristic curves obtained from three
observers in the first expected-value experi-
ment.

is significantly affected by changes in j>(SN)
alone. In the remaining 12 sessions, these
two values of p(SN) were used in conjunc-
tion with a variety of values placed on the
decision outcomes. In the fifth session, for
example, the observers were told that
p(SN)= 0.80 and were, in addition, given
the following payoff matrix:

No Yes

Signal

No Signal

- 1
KSN-B

+ 2
VN.B

+ 1
VsN-A

- 2
K f f . A

A variety of simple matrices was used.
These included, reading from left to right
across the top and then the bottom row:
(-1, +1, +3, -3) and (-1, +1, +4,
-4) with p(SN)= 0.80, and (-1, + 1, + 2,
-2), (-1, +1, +1, -1), (-2, +2, +1,
- 1), and (-3, +3, +1, -1) with
p(SN)=QAQ. By reference to Equation 4,
it may be seen that these matrices and
values of p(SN) define values of /3 ranging
from 0.25 to 3.00. The observers were
actually paid in accordance with these payoff
matrices, in addition to their regular wage.
The values were equated with fractions of
cents, these fractions being adjusted so that
the expected earnings per session remained
relatively constant, at approximately one
dollar.

The obtained values of p$(A) varied
in accordance with changes in the val-
ues of the decision outcomes as well as
with changes in the a priori probability
of signal occurrence. Just how closely
the obtained values of pN(A~) ap-
proached those specified as optimal by
the theory, we shall discuss shortly.
For now, we may note that the range
of values of PN(^) obtained from the
three observers is shown in Figure 5.
The parts of this figure also show four
values of PSN(A) corresponding to
each value of PN(A) ; the four values
of pas (A), one for each signal
strength, are indicated by different
symbols. We have, then, in the parts
of Figure 5, four ROC curves.
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Although entire ROC curves are not
precisely defined by the data of the
first experiment, these data will con-
tribute to our purpose of distinguishing
between the predictions of decision
theory and the predictions of a high
threshold theory. It is clear, for ex-
ample, that the straight lines fitted to
the data do not intersect the upper
right-hand corner of the graph, as re-
quired by the concept of a high
threshold.

We have mentioned that another
analysis of the data is of interest in
distinguishing the two theories we are
considering. As we have indicated
earlier in this paper, and developed in
more detail elsewhere (Tanner &
Swets, 1954), the concept of a high
threshold leads to the prediction that
the stimulus threshold is independent
of pN(A), whereas decision theory pre-
dicts a negative correlation between
the stimulus threshold and pN(A).
Within the framework of the high
threshold model that we have de-
scribed, the stimulus threshold is de-
fined as the stimulus intensity that
yields a pSN(A) - 0.50 for pv(A)
— 0.0. This stimulus intensity may be
determined by interpolation from psy-
chometric functions—PSN(A) vs. sig-
nal intensity—that are normalized so
that pif(A) — 0.0. The normalization
is effected by the equation:

* (A\ ps»(A)-pK(A)
PSN (A ,) corrected = , _ , , , -. L°J

commonly known as the "correction
for chance success." The intent of the
correction is to remove what has been
regarded as the spurious element of
PSN (A) that is contributed by an ob-
server's tendency to make a Yes re-
sponse in the absence of any sensory
indication of a signal, i.e., to make a
Yes response following an observa-
tion that fails to reach the threshold

level. It can be shown that the validity
of this correction procedure is implied
by the assumption of what we have
termed a high threshold. The decision
model, as we have indicated, differs in
that it regards sensory information as
thoroughly probabilistic, without a
fixed cutoff—it asserts that the pres-
ence and absence of some sensory indi-
cation of a signal are not separable
categories. According to the decision
model, the observer does not achieve
more Yes responses by responding
positively to a random selection of ob-
servations that fall short of the fixed
criterion level, but by lowering his cri-
terion. In this case, the chance cor-
rection is inappropriate; the stimulus
threshold will not remain invariant
with changes in pN(A).

The relationship of the stimulus
threshold to ps(A) in this first experi-
ment is illustrated by Figures 6 and 7.
The portion of data comprising each of
the curves in these figures was selected
to be relatively homogeneous with re-
spect to pN(A). The curves are aver-
age curves for the three observers.

FIG. 6. The relationship between the
stimulus threshold and ps(A) with the pro-
portion of positive responses to four positive
values of signal intensity, pas (A), and to
the blank or zero-intensity presentation,
ps(A), at three values of ps(A).
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FIG. 7. The relationship between the
stimulus threshold and pa (A) with the three
curves corrected for chance success, by
Equation 6.

Figure 6 shows ps(A~) and pan (
as a function of the signal intensity,
Al. The intercepts of the three curves
may be seen to indicate values of
ps(A) of 0.35, 0.25, and 0.04, respec-
tively. Figure 7 shows the corrected
value of PSN(A) plotted against signal
intensity. It may be seen in Figure 7
that the stimulus threshold — the value
of A I corresponding to a corrected
psn(A) of 0.50 — is dependent upon
PN(A) in the direction predicted by
decision theory.9

Figures 6 and 7 portray the relation-
ship in question in a form to which
many of us are accustomed ; they are
presented here only for illustrative pur-
poses. We can, of course, achieve a
stronger test by computing the coeffi-
cients of correlation between px(A)
and the calculated threshold. We have

9 AT is plotted in Figures 6 and 7 in terms
of the transmission values of the filters that
were placed selectively in the signal beam
to yield different signal intensities. These
values (0.365, O.S7S, 0.76S, 1.000) are con-
verted to the signal values in terms of foot-
lamberts that we have presented above, by
multiplying them by 1.20, the value of the
signal in foot-lamberts without selective
filtering.

made this computation, and have in the
process avoided the averaging of data
obtained from different observers and
different experimental sessions. The
product-moment coefficients for the
three observers are —.37 (/> =0.245),
-.60 0 = 0.039), and -.81 (p =
0.001), respectively. For the three
observers combined, p = 0.0008. The
implication of these correlations is the
same as that of the straight lines fitted
to the data of Figure 5, namely, that
a dependence exists between the con-
ditional probability that an observa-
tion arising from SN will exceed the
criterion and the conditional probabil-
ity that an observation arising from N
will exceed the criterion. Stated other-
wise, the correlations indicate that the
observer's decision function is likeli-
hood ratio or some monotonic function
of it and that he is capable of adopting
different criteria.

Second Expected-Value Experiment.
A second expected-value experiment
was conducted to obtain a more precise
definition of the ROC curve than that
provided by the experiment just de-
scribed. In the second experiment
greater definition was achieved by in-
creasing the number of observations
on which the estimates of pan (A) and
px(A) were based, and by increasing
the range of values of ps(A).

In this experiment only one signal inten-
sity (0.78 foot-lamberts) was employed.
Each of 13 experimental sessions included
200 presentations of the signal, and 200
presentations of noise alone. Thus, p(SN)
remained constant at 0.50 throughout this
experiment. Changes in the optimal criterion
/3, and thus in the obtained values of ps(A),
were effected entirely by changes in the
values associated with the decision outcomes.
These values were manipulated to yield (3's
(Equation 4) varying from 0.16 to 8.00. A
different set of observers served in this
experiment.

The results are portrayed in Figure
8, It may be seen that the experimen-
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tally determined points are fitted quite
well by the type of ROC curve that is
predicted by decision theory. It is
equally apparent, excepting Observer 1,
that the points do not lie along a
straight line intersecting the point
pir(A) — PSN(A) = 1.00, as predicted
by the high threshold model.

One other feature of these figures is
worthy of note. It will be recalled that
in our presentation of decision theory
we tentatively assumed that the density
functions of noise and of signal plus
noise, iy(x) and f «#(.*•)> are of equal
variance. Although we did not, in
order to preserve the continuity of the

discussion, we might have acknowl-
edged at that point that the assumption
of equal variance is not necessarily the
best one. In particular, one might
rather expect the variance of fsw(#)
to be proportional to its mean. At any
rate, the assumption made about vari-
ances represents a degree of freedom
of the theory that we have not empha-
sized previously. We have, however,
used this degree of freedom in the con-
struction of the theoretical ROC curves
of Figure 8. Notice that these curves
are not symmetrical about the diagonal,
as are the curves of Figure 3 that are
predicated on equal variance. The
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FIG. 8. Empirical receiver-operating-characteristic curves for four observers in
the second expected-value experiment.



320 J. A. SWETS, W. P. TANNER, JR., AND T. G. BIRDSALL

FIG. 9. The probability of a correct
choice in a four-alternative forced-choice
experiment as a function of d'.

curves of Figure 8 are based on the
assumption that the ratio of the incre-
ment of the mean of fs.v(^) to the in-
crement of its standard deviation is
equal to 4, AJkf/Ao- = 4. A close look
at these figures suggests that ROC
curves calculated from a still greater
ratio would provide a still better fit.
Since other data presented in the fol-
lowing bear directly on this question
of a dependence between variance and
signal strength, we shall postpone fur-
ther discussion of it. We shall also
consider later whether the exact form
of the empirical ROC curves supports
the assumption of normality of the
density functions is(x) and f8Af(^).
For now, the main point is that deci-
sion theory predicts the curvilinear
form of the ROC curves that are
yielded by the observers.

Forced-Choice Experiments
We have indicated above that an ex-

tension of the decision model may be
made to predict performance in a
forced-choice test. On each trial of a
typical forced-choice test, the signal is
presented in one of n temporal inter-
vals, and the observer selects the inter-
val he believes to have contained the
signal. It will be intuitively clear that,

to behave optimally, in the sense of
maximizing the probability of a correct
response, the observer must make an
observation x in each interval, and
choose the interval having the greatest
value of x associated with it. Equiva-
lently, he may rank the intervals ac-
cording to their values of likelihood
ratio and choose that interval yielding
the greatest value of likelihood ratio.

If the observer behaves optimally,
then the probability that a correct an-
swer will result, p ( c ) , for a given value
of d', is expressed by:

/.+O

=
J—00

[7]

where: i(x) is the area of the noise func-
tion to the left of x, g(x) is the ordinate
of the signal-plus-noise function, and n is
the number of intervals used in the test.

This is simply the probability that one
drawing from the distribution due to
signal plus noise is greater than the
greatest of w-1 drawings from the dis-
tribution due to noise alone.

It is intuitively clear that if the sig-
nal produces a large shift in the noise
function, i.e., if d' is large, then the
probability that the greatest value of x
will be obtained in the interval that
contains the signal is also large, and
conversely—indeed (for a fixed num-
ber of intervals) p ( c ) is a monotonic
function of d'. Equation 7 can be seen
to be a function of d' by noting that,
under the assumption of equal vari-
ance, the signal-plus-noise function is
simply the noise function shifted by
d', i.e., g(x~) = i(x — d'). Thus d' may
be defined in a forced-choice experi-
ment by determining a value of p ( c }
for some signal intensity and then
using Equation 7 to determine d'. A
plot of p ( c ) versus d', for the case of
four intervals, and under the assump-
tion of equal variance, is shown in
Figure 9.
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Estimates of Signal Detectability
Obtained from Different Procedures.
According to detection theory, the esti-
mates of d' for a signal and background
of given intensities should be the same
irrespective of the psychophysical pro-
cedure used to collect the data. Thus
we may check the internal consistency
of the theory by comparing estimates
of d' based on yes-no and on forced-
choice data. The results of such a
comparison have been reported in an-
other paper (Tanner & Swets, 1954).
It was shown there that estimates of
d' based on the data of the first ex-
pected-value experiment that we have
presented above, and on forced-choice
tests conducted in cqnjunction with it,
are highly consistent with each other.
Comparable estimates of d' have also
been obtained in auditory experiments
—from yes-no and forced-choice pro-
cedures, and from forced-choice proce-
dures with from two to eight alterna-
tives (Swets, 1959). Hence, decision
theory provides a unification of the
data obtained with different proce-
dures; it enables one to predict the
performance in one situation from data
collected in another.

It is a commonplace that calculated
values of the stimulus threshold are not
independent of the psychophysical pro-
cedure that is employed (Osgood,
1953). Of particular relevance to our
present concern is the finding that
thresholds obtained with the forced-
choice procedure are lower than those
obtained with the yes-no procedure
(Blackwell, 1953). This finding is ac-
counted for, in terms of decision the-
ory, by the fact that the calculated
threshold varies monotonically with the
false alarm rate (see Figure 4)—with
high thresholds corresponding to low
false alarm rates such as were obtained
in these experiments. The dependence
of the stimulus threshold upon the false
alarm rate, however the threshold is

calculated, precludes the existence of
a simple relationship between thresh-
olds obtained with the yes-no proce-
dure and those obtained with other
response procedures. It is also the
case that the normalization of the psy-
chometric function provided by the
correction for chance, or the normali-
zation achieved by defining the thresh-
old as the stimulus intensity yielding
a proportion of correct responses half-
way between chance performance and
perfect performance, does not serve to
relate forced-choice thresholds obtained
with different numbers of alternatives.

Theoretical and Experimental Analy-
sis of Second Choices. As we have
indicated, a variation of the forced-
choice procedure—in which the ob-
server indicates his second choice as
well as his first—provides a powerful
test of a basic difference between the
decision model and the high threshold
model. If the observer is capable of
discriminating among values of the ob-
servations x that fail to reach what we
have termed the threshold, i.e., a crite-
rion fixed at approximately +3<r from
the mean of the noise function, then
the proportion of second choices that
are correct will be considerably higher
than if he is not.10

According to the high threshold
model, only very infrequently will more
than one of the n observations of a
forced-choice trial exceed the thresh-
old. Since the observations which do
not exceed the threshold are assumed
by the model to be indiscriminable, the
second choice will be made among the
n — 1 alternatives on a chance basis.

10 This experiment was suggested to us
by R. Z. Norman, formerly a member of the
Electronic Defense Group, now at Prince-
ton University. The general rationale of
this experiment, and the results of its appli-
cation to the perception of words exposed
for short durations, have been presented by
Bricker and Chapanis (19S3) and by Howes
(19S4).
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FIG. 10. The results of the second-choice
experiment. (The proportions of correct
second choices are plotted against d'. The
curve labeled "2nd Choice" represents the
prediction of decision theory, assuming the
density functions to be normal and of equal
variance. The prediction of the high thresh-
old theory is shown by the dotted line.)

Thus, for a four-alternative experiment
as described in the following, the high
threshold model predicts that, when
the first choice is incorrect, the proba-
bility that the second choice will be
correct is 0.33. This predicted value,
it may be noted, is independent of the
signal strength.

Decision theory, on the other hand,
implies that the observer is capable of
ordering the four alternatives accord-
ing to their likelihood of containing the
signal. If this is the case, the propor-
tion of correct second choices will be
greater than .33. Should one of the
samples of the noise function be the
greatest of the four, leading to an in-
correct first choice, the probability that
the observation from the signal-plus-
noise distribution will be the second
greatest is larger than the probabilities
that either of the observations of the
noise distribution will be the second
greatest. Again, it is intuitively clear
that this probability is a function of
d', or of signal strength—=i.e., the prob-
ability that the observation of the sig-
nal-plus-noise value will be greater
than two of the observations of noise

increases with increases in d'. Specifi-
cally, the probability of a correct sec-
ond choice in a four-alternative, forced-
choice test, for a given value of d', is
given by the expression:

[8]

where the symbols have the same
meaning as in Equation 7. This rela-
tionship is plotted in Figure 10 under
the assumptions that the density func-
tions of noise and signal plus noise are
Gaussian and of equal variance. (The
function predicted by decision theory
for the proportion of correct first
choices in a three-alternative situation
is included in Figure 10 to show that
this function is not the same as the
predicted function of the probability of
of a correct second choice, given an
incorrect first choice, for the four-
alternative situation).

To distinguish between the two predictions,
data were collected from four observers;
two of them had served previously in the
second expected-value experiment, whereas
the other two had received only routine
force-choice training. Each of the observers
served in three experimental sessions. Each
session included ISO trials in which both
a first and second choice were required.

The resulting 12 proportions of cor-
rect second choices are plotted against
d' in Figure 10. The values of d' were
determined by using the proportions of
correct first choices as estimates of the
probability of a correct choice, p ( c ) ,
and reading the corresponding values
of d' from the middle curve of Figure
10, which is the same curve shown in
Figure 9. Although just one value of
signal intensity was used (0.78 foot-
lamberts as in the second expected-
value experiment), the values of d'
differed sufficiently from one observer
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to another to provide an indication of
the agreement of the data with the two
predicted functions. Additional varia-
tion in the estimates of d' resulted from
the fact that, for two observers, a con-
stant distance from the signal was not
maintained in all three of the experi-
mental sessions.

A systematic deviation of the data
from a proportion of 0.33 clearly ex-
ists. Considering the data of the four
observers combined, the proportion of
correct second choices is 0.46. Fur-
ther, a correlation between the propor-
tion of correct second choices and d'
is evident.

Two control conditions aid in inter-
preting these data. The first of these
allowed for the possibility that requir-
ing the observer to make a second
choice might depress his first-choice
performance. During the experiment,
blocks of 50 trials in which only a first
choice was required were alternated
with blocks of 50 trials in which both
a first and a second choice were re-
quired. Pooling the data from the four
observers, the proportions of correct
first choices for the two conditions are
0.650 and 0.651, a difference that is
obviously not significant. A prelimi-
nary experiment in which data were
obtained from a single observer for five
values of signal intensity also serves
as a control. In that experiment, 150
observations were made at each value
of signal intensity. The relative fre-
quencies of correct second choices for
the lowest four values of signal inten-
sity were, in increasing order of sig-
nal intensity: 26/117 (0.22), 33/95
(0.35), 30/75 (0.40), and 20/30
(0.67). For the highest value of sig-
nal intensity, none of five second
choices was correct. In this experi-
ment, then, the proportion of correct
second choices is seen to be correlated
with a physical measure of signal in-
tensity as well as with the theoretical

measure d'—this eliminates the possi-
bility that the correlation found with a
constant value of signal intensity, in-
volving d' as one of the variables (Fig-
ure 10), is an artifact of theoretical
manipulation.

It may be seen from Figure 10 that
the second-choice data also deviate sys-
tematically from the predicted function
derived from decision theory. This
discrepancy, as will be seen, results
from the inadequacy of the assumption
—of equal variance of the noise and
signal-plus-noise density functions—
upon which the predicted functions in
Figure 10 are based. It was pointed
out above that the data obtained in the
second expected-value experiment (see
Figure 8 and accompanying text) indi-
cate that a better assumption would be
that the ratio of the increment in the
mean of the signal-plus-noise function
to the increment in its standard devia-
tion is equal to 4. Figure 11 shows
the second-choice data and the pre-
dicted four-alternative and second-
choice curves derived from the theory
under this assumption that AM/A<r
= 4. In view of the variance associ-
ated with each of the points (each first-
choice d' was estimated on the basis

FIG. 11. The results of the second-choice
experiment calculated under another as-
sumption. (The predictions from deci-
sion theory for first and second choices
are plotted under the assumption that
AAf/A<r = 4.
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of 300 observations and each second-
choice proportion on less than 100
observations), the agreement of the
data and the predicted function shown
in Figure 11 is quite good.

The conclusion to be drawn from
these results of the second-choice ex-
periment, though perhaps more obvious
here, is the same as that drawn from
the yes-no, or expected-value, experi-
ments : the sensory information, or the
decision axis, is continuous over a
greater range than allowed for by the
high threshold model. If a threshold
cutoff, below which there is no dis-
crimination among observations, exists
at all, it is located in such a position
that it is exceeded by much of the noise
distribution.

Note on the Variance Assumption
Before considering the two remain-

ing experiments, we should pause
briefly to take up the problem of the
relative sizes of the variances of the
noise and signal-plus-noise distribu-
tions. We have seen, as indicated in
the theoretical discussion, that an as-
sumption concerning these variances
may be tested by experiment. We have
found that two sets of data, from
yes-no and forced-choice experiments,
support the assumption that the vari-
ance of the signal-plus-noise distribu-
tion increases with its mean. In par-
ticular, the assumption that AM/Ao-
= 4 is seen to fit those data reasonably
well, and noticeably better than the
assumption of equal variance. We
should like to point out three aspects
of this topic in the following para-
graphs : first, the assumption of AM/
Ao- = 4 is probably not generally appli-
cable ; second, that we have good rea-
son to suspect in advance of experi-
mentation, in the visual case, that the
variance of the signal-plus-noise distri-
bution is greater than that of the noise
distribution; and, third, that the very

assumption of unequal variances re-
quires that we qualify a statement made
earlier in this paper.

It will be apparent that if the vari-
ance of these sampling distributions is
a function of sample size, then their
variances will differ as a function of
the duration and the area of the signal.
The assumption of AM/Ao- = 4 will
probably not fit the results of experi-
ments with different physical parame-
ters. Further, as we have indicated,
we have not explored the extent of
agreement between other specific as-
sumptions and our present data. It
appears likely that more precise data
will be required to determine the rela-
tive adequacy of different assumptions
about the increase in variance with
signal strength.

Peterson, Birdsall, and Fox (1954),
after developing the general theory of
signal detectability, spelled out the spe-
cific forms it takes in a variety of dif-
ferent detection problems. By way of
illustration, we may mention the prob-
lems in which the signal is known
exactly, the signal is known exactly
except for phase, and the signal is a
sample of white Gaussian noise. A
principal difference among these prob-
lems lies in the shape of the expected
ROC curve. For our present purposes,
we may regard these problems as dif-
fering in the degree of variance con-
tributed by the signal itself. For the
first case mentioned, the signal con-
tributes no variance—the signal-plus-
noise distribution is simply a transla-
tion of the noise distribution, the two
have equal variances. In the other
two cases, the signal itself has a varia-
bility which increases with its strength.

Clearly, if we are to select one of
the specific models incorporated within
the theory of signal detectability to
apply to a visual detection problem, we
would not select the one that assumes
that the signal is known exactly, for
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the visual signal does not contain phase
information. Thus, the second model
is more likely to be applicable than the
first. Actually, the third model, which
assumes that the signal is a sample of
noise, is the best representation of a
visual signal. The fundamental point
here is that either of the last two
models leads to predicted results quite
similar to those that are predicted
under the assumption that AM/Atr
= 4. Further discussion of this point
would lead us too far off the path; we
would like simply to note here that a
specific form of the theory of signal
detectability, which on a priori grounds
is most likely to be applicable to vision
experiments, predicts results very simi-
lar to those obtained. It is interesting
to note in this connection that the re-
sults of auditory experiments using
pure tones as signals are in close agree-
ment with the signal-known-exactly
model, with the assumption of equal
variance.

The discerning reader will have
noted that the assumption of a variance
of the signal-plus-noise distribution
that increases with its mean is incon-
sistent with a statement made in the
theoretical discussion. In particular,
the assumption of a greater variance
of fsff(#) than of iy(x) conflicts with
the statement that the decision axis x
may be regarded as a likelihood-ratio
axis. It was stated above (see the
discussion following Figure 2) that a
multidimensional response of the sen-
sory system, i.e., one that might be
represented by a point y in a multi-
dimensional space, could be mapped
into a line by considering the likeli-
hood that y arose from SN relative to
the likelihood that y arose from N, or
A (30 = WiO/iJvCy)- We then stated
that we could identify the observation
variable x with some monotonic trans-
formation of A(;y). If, now, the vari-
ance of fsy(^) is greater than the

variance of f^(^), then as x decreases
from a high value, A(^r) will decrease
—but, at some point below the mean
of the function iN(x}, A(>) will begin
to increase again, and will, as a matter
of fact, become greater than unity.
Thus, if we choose to maintain the as-
sumption of a greater variance of
isN(x), then the variable x cannot be
regarded, throughout its range, as a
likelihood ratio. Given that we do
want to maintain the assumption of
increasing variance of W(#), for the
time being at least, we may take any
of several possible steps to correct the
difficulty. We can, for example, as-
sume that there exists a low threshold,
near the mean of ix(x), such that val-
ues of x less than this threshold are not
ordered by the observer, and hence the
fact that x cannot be considered as a
likelihood ratio below this point is of
no consequence. Another alternative
is to assume outright that the variable
x is unidimensional, without recourse
to the likelihood-ratio argument to
make the assumption reasonable.
Which particular solution we shall
adopt will depend upon further experi-
mentation.

Analysis 0} the Rating Scale
We have concluded from the experi-

ments described above that the observ-
er's decision axis is continuous over
a large range, i.e., that he can order
observations likely to result from noise
alone. We might expect then, in the
language of decision theory, that he
will be able to report the a posteriori
probability of signal existence, i.e., that
he will be able to state, following an
observation interval, the probability
that a signal existed during the inter-
val. In more familiar terms, we are
expecting that the observer will be
capable of reporting a subjective prob-
ability, or of employing a rating scale.
Experimental verification of this hy-
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pothesis is required, of course, for a
reasonable doubt remains whether the
observer will be able to maintain the
multiple criteria essential to the use of
a rating scale. If, for example, six
categories of a posteriori probability
are used, or a six-point rating scale,
the observer must establish five criteria
instead of just one as in the yes-no
procedure—this may be considerably
more difficult.

The ability to make a probability or
rating response is of interest, in part,
because such a response is highly effi-
cient—in principle, a probability re-
sponse retains all of the information
contained in the observation. In con-
trast, breaking up the observation con-
tinuum into Yes and No sections is a
process that loses information. From
a procedure forcing a binary response,
one learns from the observer only that
the observation fell above or below a
critical value, and not how far above
or below. In some practical detection
problems, the finer-grain information
gained from a probability response can
be utilized to advantage: the observer
may record a posteriori probability so
that Yes and No decisions concerning
the action to be taken can be made at a
later time, or by someone else who may
be more responsible or who may pos-
sess more information about the values
and costs of the decision outcomes.

More to the point in terms of our
present interests, an experimental test
of the ability to make a rating response
contributes to the evaluation of deci-
sion theory, and also to distinguishing
between the adequacy of decision the-
ory and the high threshold theory.
Since the data obtained with a rating
procedure may be used to construct
ROC curves, this experiment attacks
the same problem as those described
above, i.e., whether the observer can
discriminate among observations likely
to result from noise alone. It is also

the case, as pointed out by Egan,
Schulman, and Greenberg (1959), that
the rating procedure generates ROC
curves, of a given reliability, with a
considerable economy of time com-
pared to the yes-no procedure. There-
fore it is of interest, with respect to
future applications of decision theory,
to determine whether the observer can
perform as well, as indexed by d', with
the rating procedure as with the yes-
no procedure.

The observer's task in this experiment was
to place each observation in one of six cate-
gories of a posteriori probability. Four
categories of equal size (0.2) were used in
the range between 0.2 and 1.0; the other two
categories were 0.0-0.04 and 0.05-0.19. The
boundaries of the categories were chosen in
conference with the observers; they believed
that they would be able to operate reasonably
within this particular scheme. Actually, the
specific sizes of the categories used are not
important for most purposes; we can as well
think of a six-point rating scale and assume
only the property of order.

The four observers in this experiment
were those who served in the second ex-
pected-value experiment. Further, the same
signal intensity (0.78 foot-lamberts) and
the same a priori probabilities—p(SN) —
p(N)=0.50—that were employed in that
experiment were employed in this one. The
observers made a total of 1,200 observations
in three experimental sessions.

Results. The raw data for each ob-
server consist of the number of ob-
servations of signal plus noise and the
number of observations of noise alone
that were placed in each of the six
categories of a posteriori probability.
Before proceeding with more complex
analyses, we shall first make a rough
determination of the validity of the
observers' use of the categories, i.e.,
of whether we are, in fact, dealing with
a scale. This may be achieved by
computing the proportion of the total
number of observations placed in each
category that were actually observa-
tions of a signal. If the categories
were used properly, this proportion
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will increase with increases in the
probabilities that define the categories.

The results of this analysis are
shown in Figure 12. Five curves are
plotted there, one for each of the four
observers and one showing the average
result. We may note, as an aside, that
Observer 4 is considerably more cau-
tious than the others. A look at the
raw data reveals that he used the low-
est category twice to four times as
often as the other observers; as a mat-
ter of fact, he placed 60% of his ob-
servations in that category. We may
look for this difference to reappear in
other analyses of the data of this ex-
periment. The major point here, how-
ever, is that three of the four indi-
vidual curves are monotonic increasing,
whereas the fourth shows only one
reversal. This result indicates the
feasibility of using a scaling procedure
—it indicates that requiring an ob-
server to maintain five criteria simul-
taneously in a detection problem is not
unreasonable. The result is consistent
with an ability to order completely the
observations, those arising from noise
alone as well as those arising from
signal plus noise.

ROC Curves Obtained from the
Rating Data. ROC curves can be
generated from data obtained with the
rating procedure since these data can
be compressed to those of the binary-
decision procedure with any of several
criterion levels. That is to say, we can
calculate the pair of values, ps(A) and
PSN(A), ignoring all but one of the
(five) criteria, or category boundaries,
employed by the observer. We suc-
cessively calculate five pairs of these
values, each time singling out a differ-
ent criterion, and thus trace out an
ROC curve. In particular, we first
compute the conditional probabilities
that observations arising from noise
alone and from signal plus noise will be
placed in the top category; then these

2 3 1 5
0.0-0.04 .05-.19 .20-.39 .40-.59 .60-79 .80-I0C

Categories of A Posterior i Probability

FIG. 12. The results of the rating
experiment.

probabilities are computed with respect
to the top two categories, and so forth.
We assume, in these calculations, that
observations placed in a particular
category would fall above the criteria
that define a lower category.

The ROC curves so obtained are
shown in the upper left-hand portions
of each part of Figure 13. (Ignore,
for now, the other curves in Figure
13.) We may note that the data are
well described by the type of ROC
curve predicted from decision theory.
As is the case with the empirical ROC
data from yes-no experiments, they
cannot be fitted well by a straight
line intersecting the point pss(A) =
pu(A) = 1.0, the prediction made from
the high threshold theory. This result
indicates that the observers can dis-
criminate among observations likely to
result from noise alone, and are capable
of maintaining the multiple criteria
required for the rating response.

Comparison of ROC Curves Ob-
tained from Ratings and Binary De-
cisions. It is intuitively clear that an
estimate of d' of given reliability can
be achieved with fewer observations by
the rating procedure than by the yes-no
procedure. This proposition is sup-
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FIG. 13. Empirical receiver-operating-characteristic curves for four observers in
the rating experiment—two alternative presentations.

ported by a comparison of the yes-no
data shown in Figure 8 with the rating
data shown in Figure 13—the rating
data, which show considerably less
variation, are based on 1,200 observa-
tions whereas the yes-no data are based
on approximately 5,000 observations.

The economy provided by the rating
procedure makes it desirable to deter-
mine whether the two procedures are
equivalent means of generating the
ROC curve. Unfortunately, to answer
this question immediately, there are
some clear differences between the
ROC curves we have obtained with the
two procedures. These differences are

best illustrated by plotting the data on
normal coordinates, i.e., on probability
scales transformed so that the normal
deviates are linearly spaced. These
scales are convenient since on them
the ROC curve specified by decision
theory becomes a straight line. Fur-
ther, the slope of this line represents
the relative variances of the density
functions, iy(x) and f«^(^), that un-
derlie the ROC curve. In particular,
it can be shown that the reciprocal of
the slope (with respect to the normal
deviate scales) is equal to the ratio
<rSN/vN.

The empirical ROC curves obtained
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with the rating and yes-no procedures
are shown on normal coordinates in
Figure 14. It is immediately evident
from this figure that a lower detecta-
bility resulted from the rating proce-
dure for all four observers. We may
see from the alternative presentations
of these data in Figures 8 and 13 that
the values of d' range from 2.0 to 3.0
for the yes-no data and from 1.5 to
2.0 for the rating data.11 It is further
apparent in Figure 14 that, consistent
with the difference in d', the rating
curve has a greater slope than the
yes-no curve. This difference is small
—the greater variance of fsw(^) under
the yes-no procedure did not show
clearly in the plots on linear proba-
bility axes—but it is regular. We may
also note again, as this way of plotting
the data makes very clear, that the rat-
ing data show considerably less scatter
than the yes-no data.

The values and costs associated with
the decision outcomes in this situation
make us hesitant, on the basis of the
data we obtained, to reject the hypothe-
sis that the rating and yes-no proce-
dures are equivalent means of generat-
ing ROC curves. It is possible, of
course, that some undetected difference
existed between the experimental con-
ditions in the two experiments; one
was conducted after the other was com-
pleted. Such a difference might easily
account for the relatively small dis-
crepancies observed. Again, it has re-
cently been shown in an auditory ex-
periment that the two procedures result
in essentially the same ROC curve,
both with respect to d' and to slope
(Egan, Schulman, & Greenberg, 1959).
Still, we cannot discount the present

11 Values of d' can, of course, be computed
from the normal deviate scales of the plots in
Figure 14. A problem arises, however, if
the slope of the line fitted to the data is not
unity. A solution to this problem is proposed
in Clarke, Birdsall, and Tanner (1959).

results on the basis of the auditory ex-
periment, for we have noted several
differences between visual and auditory
data that are likely to be real—one per-
haps relevant to this issue is that the
ROC curves obtained with pure tones
have slopes that are uniformly near one.
We should perhaps be content, at this
point, with the admittedly weak con-
clusion that no data exist to support the
hypothesis that the two procedures are
equivalent in the case of visual
stimuli.12

Test of the Normality of the Density
Functions. At this juncture, it is con-
venient to turn briefly, but explicitly,
to a topic first considered in the theo-
retical discussion. It was stated there
that we would assume the density func-
tions on the observer's decision axis to
be Gaussian in form, but that the as-
sumption was subject to experimental
test. A test of this assumption is pro-
vided by plotting the empirical ROC
curves on normal coordinates. Having
now introduced plots of the data in this
form in Figure 14, we may use them
for this purpose. If the observer's den-
sity functions are normal, then the em-
pirical points of an ROC curve plotted
on normal coordinates will be fitted
best by a straight line. Clearly, a
straight line provides an adequate de-
scription of the data in these figures.
Thus the assumption of normality, an
important one for the sake of simplicity
of analysis, is supported by the data.

Approach to Optimal Behavior
In the presentation of experimental

results thus far, we have concentrated
on the continuity of the observer's deci-
sion axis, and on his ability to adopt

12 As this article goes to press we can re-
port that in a repetition of this experiment
with visual stimuli (unpublished) no reliable
or regular differences were found between
ROC curves obtained from ratings and
binary decisions.
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FIG. 14. Comparison of the receiver-operating-characteristic curves obtained from
ratings and binary decisions.

various criteria along this axis. A re-
maining question is how closely the
criteria he adopts correspond to those
specified by decision theory as the opti-
mal criteria, To answer this question
we shall consider some further analy-
ses of experimental results already de-
scribed, and the results of an additional
experiment.

It should be recalled that decision
theory specifies as the optimal decision
function either likelihood ratio, X ( x ) ,
or some monotonic function of likeli-
hood ratio, call it \(x)'. That is to
say, any transformation of the decision
axis is acceptable as long as order is
maintained. If the decision function
is A(.*•), then the optimal criterion is

the value of X(x) equal to /? (Equa-
tion 3). If the decision function is
\(x)', then the optimal criterion is the
value of this function that corresponds
to /?, call it /?'. The monotonic re-
lationship means that A(#)' > /?' <•»
\(x) > /3. Thus to establish the ap-
plicability of decision theory, it is suffi-
cient to demonstrate that the observer's
criteria are monotonically related to /?.
If sampling error is taken into account,
it is sufficient to demonstrate a signifi-
cant correlation between the observer's
criteria and p. It is of interest, how-
ever, to determine just how closely the
observer's criteria do approach the op-
timal criteria as specified by /9. In
examining this question we shall make
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use of the fact that, in order to index
the observer's criterion, it is not
strictly necessary to compute a value
of likelihood ratio from the proportions
of hits and false alarms; it is more
convenient, and for purposes of inter-
pretation, more direct, to take simply
the proportion of false alarms as the
index.

Criteria Employed in the Expected-
Value Experiments. In the first ex-
pected-value experiment, the observers
were told only the a priori probabilities
of signal and noise and the values of
the various decision outcomes that
were in effect during each experimental
session. They were not told that any
combination of these factors can be ex-
pressed by a single number (ft) which,

in conjunction with a value of d', speci-
fies the optimal criterion or the optimal
false alarm rate. The rank-order cor-
relations between /3 and the obtained
proportions of false alarms that were
computed from the data of this first
study were .70, .46, and .71 for the
three observers, respectively. A corre-
lation of .68 is significant at the .01
level of confidence. This result indi-
cates that the observer did not merely
vary his criterion from one session to
another, but that his criterion varied
appropriately with changes in /?.

In the second expected-value experi-
ment, the observers were told the opti-
mal proportion of false alarms for
each session as well as the a priori
probabilities and decision values. This
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information was available to the ex-
perimenter since values of d' had pre-
viously been determined by the forced-
choice procedure during a training
period. Thus, in the second study,
we were asking how closely the ob-
server would approach the optimal false
alarm rate given knowledge of it. The
rank-order correlations between the
false alarm rates announced as optimal
and the false alarm rates yielded by the
four observers were .94, .97, .86,
and .98. Again, a coefficient of .68
is significant at the .01 level of con-
fidence. Data obtained later in an audi-
tory experiment showed coefficients of
this magnitude—as a matter of fact,
the rank-order cofficient based on five
pairs of measures for each of two ob-

servers in the auditory experiment was
1.0—when the observers were not in-
formed of the optimal false alarm rate
(Tanner, Swets, & Green, 1956).

Satisfying a Restriction on the Pro-
portion of False Alarms. A more di-
rect attack on the question of the
observer's ability to reproduce a given
false alarm rate is provided by an ex-
perimental procedure not previously
described in detail, one involving a
different definition of optimal behavior.
Under this definition of optimal behav-
ior, no values and costs are assigned
the various decision outcomes; instead,
a restriction is placed on the propor-
tion of false alarms permitted. The
optimal behavior is to maximize the
proportion of hits while satisfying the
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restriction on false alarms. This, it
will be recognized, is the procedure
most popular among experimenters for
testing statistical hypotheses.

An experiment using this procedure
was conducted with a different set of
four observers. The a priori probabil-
ity of signal occurrence was 0.72
throughout the experiment. There
were, then, 14 presentations of noise
alone in a block of 50 presentations.
There were four different experimental
conditions, each extending over 18
blocks of 50 presentations. In each of
these conditions, the observers were
instructed to adopt a criterion that
would result in Yes responses to ap-
proximately n or n + 1 of the 14 pres-
entations of noise alone in a block of

50 presentations. For the four condi-
tions of the experiment, n was equal
to 0, 3, 6, and 9, respectively. Thus
the acceptable range for the proportion
of false alarms was .0-.07, .21—.28,
.43-.SO, or .64-.71. The primary
data consist of four values of false
alarm rate for each observer; each
value is based on 252 presentations of
noise alone.

The data are shown in Figure 15.
The false alarm rates obtained are
plotted against the restricted ranges of
false alarm rate. The four observers
are represented by different symbols;
the vertical bars designate the accept-
able range. It may be seen that the
largest deviation from the range stipu-
lated is .04. This result suggests that
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FIG. 15. The reproduction of a given
false alarm rate.

the observer is able to adjust his crite-
rion with considerable precision.

Two other pieces of information are
needed, however, to interpret the data
shown in Figure 15. For, of course,
if the observer were given information
about the correctness of his response
after each response, these data could
be obtained even if the observer were
unable to vary his criterion. The ob-
server could then approximate any
false alarm rate by saying "yes" until
the desired number of false alarms was
achieved, and then by saying "no" on
the remaining presentations. That pro-
cedure would entail a severe depression
of d'. Actually, the observers were
given information about correctness
only after each block of 50 presenta-
tions, and the values of d' were not
depressed. Thus the false alarm rates
that were obtained may legitimately be
regarded as reflecting the observer's
criteria.

Criteria Employed in the Rating
Scale Experiment. We may also in-
vestigate how closely the multiple cri-
teria adopted by the observers in the
rating scale experiment approach the
optimal criteria. Stated otherwise, we

may examine the relationship that ex-
isted between the subjective and objec-
tive probabilities of signal occurrence
in that experiment. It may be noted
in advance that an alternative presenta-
tion of the results, in Figure 12, gives
an indication of the extent of agree-
ment we may expect.

As stated earlier, the a posteriori
probability of signal existence is a
monotonic function of likelihood ratio.
In particular, the optimal relationship
between the two is:

P.(SN) =
\(x)p(SN)

\(x)p(SN) + p(N) [9]

where: p,(SN*) denotes the probability
that the signal existed given the observa-
tion x (i.e., the a posteriori probability),

\(#) is the likelihood ratio, and p(Sff) and
P(N) are the a priori probabilities (Peter-
son et al., 19S4).

For our experiment, with p(SN) =
p (N) = 0.50, this equation reduces to:

P,(SN) = \(x) [10]

As described above, a point on the
ROC curve can be obtained for each
of the boundaries of the six categories
employed by the observer, i.e., for the
five criteria he employed. Since, as
we have also pointed out, the criterion
value of \(x) corresponds to the slope
of the ROC curve at the point in ques-
tion, this criterion value of A(^) can
be determined. Thus px(SN} =
X(x)/\(x} + 1 can be computed for
each of the criteria employed by the
observer. Assuming now that the ob-
server's decision function is likelihood
ratio, then if he is behaving according
to the optimal relationship between
px(SN) and A(», the values of \(x)/
A.(#) + 1 computed from his data will
correspond directly to probability val-
ues that were announced as denning
the categories. In short, we know the
values of px(SN') that were announced
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as marking off the categories; by pur-
suing a route through the empirical
ROC curve and \(x) we can calculate
the values of px(SN) that bound the
categories the observer actually used—
therefore we can assess how well the
two sets of criterion values of px(SN),
the objective and subjective probabili-
ties, agree.

The lower right-hand portions of
Figure 13 show the probability values
that were announced as denning the
categories, plotted against the proba-
bility values that characterize the cri-
teria actually employed by the observ-
ers, i.e., against px(SN) = X(x)/\(x)
+ 1 as determined from the data.
(Some points are missing since \(x)
is indeterminate at very low values of
pN(A}.~) It is apparent from these
plots that Observers 1, 2, and 3 are
operating with a decision function simi-
lar to likelihood ratio and approxi-
mately according to the optimal rela-
tionship between />3,(SW) and \(x).
The pattern exhibited by Observers 1
and 3, that of overestimating small
deviations from a probability of 0.50,
will be familiar to those acquainted
with the literature on subjective prob-
ability. Observer 4, as we noted
earlier, is quite different from the
others. His tendency, also evidenced
but to a far lesser extent by Observer
2, is to consistently underestimate the
a posteriori probability, i.e., to set all
of his criteria too high.

To summarize our discussion of how
nearly the criteria adopted by the ob-
servers in these several experiments
correspond to the optimal criteria, we
may say that the observer, for want of
a better term, behaves in an "optimal
fashion." He is responsive to changes
in both the a priori probability of sig-
nal occurrence and the values of the
decision outcomes; the criteria he
adopts are highly correlated with the
optimal criteria. Subjective trans-

formations of the real probability scale
and of the "real" value scale do, of
course, exist, and differ somewhat from
one observer to another. Undoubtedly,
values also play a role in those experi-
ments in which no values are explicitly
assigned by the experimenter. Never-
theless, we have seen that the observer
can adopt successively as many as 10
different criteria, on the basis of differ-
ent combinations of probabilities and
values presented to him, that are al-
most perfectly ordered. He can main-
tain simultaneously at least five criteria
that are a reasonable facsimile of the
optimal criteria. If he is told the opti-
mal false alarm rate, he can, provided
it is not very large or very small, ap-
proximate it with a small error.

SUMMARY, CONCLUSIONS, AND
REVIEW OF IMPLICATIONS

We imagine the process of signal
detection to be a choice between two
Gaussian variables. One, having a
mean equal to zero, is associated with
noise alone; the other, having a mean
equal to d', is associated with signal
plus noise. In the most common de-
tection problem the observer decides,
on the basis of an observation that is
a sample of one of these populations,
which of the two alternatives existed
during the observation interval. The
particular decision that is made de-
pends upon whether or not the obser-
vation exceeds a criterion value; the
criterion, in turn, depends upon the
observer's detection goal and upon the
information he has about relevant pa-
rameters of the detection situation.
The accuracy of the decision that is
made is a function of the variable d'
which is monotonically related to the
signal strength.

This description of the detection
process is an almost direct translation
of the theory of statistical decision.
The main thrust of this conception, and
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the experiments that support it, is that
more than sensory information is in-
volved in detection. Conveniently, a
large share of the nonsensory factors
are integrated into a single variable,
the criterion. There remains a meas-
ure of sensitivity (d1) that is purer
than any previously available, a meas-
ure largely unaffected by other than
physical variables. This separation of
the factors that influence the observer's
attitudes from those that influence his
sensitivity is the major contribution of
the psychophysical application of sta-
tistical decision theory.13

We have indicated several times in
the preceding that another conception
of the detection process, one involving
what we termed a "high threshold," is
inconsistent with the data reported. It
should be noted, however, that these
data, to the extent analyzed in this
paper, do not preclude the existence of
a lower threshold. The analyses pre-
sented do not indicate explicitly how
far down into the noise the observa-
tions are being ordered, i.e., how low
a threshold must be relative to the

18 It is interesting to note that the present
account is not the first to model psycho-
physical theory after developments in the
theory of statistical decision—as a matter
of fact, Fechner was influenced by Bernoulli's
suggestion that expectations might be ex-
pressed in terms of satisfaction units. As
Boring (1950, p. 285) relates the story,
Bernoulli's interest in games of chance led
him to formulate the concept of "mental
fortune"; he believed changes in mental
fortune to vary with the ratio of the change
in physical fortune to the total fortune. This
mathematical relationship between mental
and physical terms was the sort of relation-
ship that Fechner sought to establish with
his psychophysics. It should also be ob-
served that Fechner anticipated the decision
model under discussion in a much more
direct way. His concept of "negative sen-
sations," largely dismissed by subsequent
workers in- the field, denies the existence of
such a cut in the continuum of observations
that the magnitudes of observations below
the cut are indiscriminable.

noise distribution in order to be com-
patible with the data. As it happens,
further analyses of the yes-no and
forced-choice results show them to be
consistent with a threshold slightly
above the mean of the noise distribu-
tion. If, for example, we examine the
empirical ROC curves of Figures 8
and 13, we see that at values of pN(A)
greater than 0.16, the curves are ade-
quately fit by a straight line through
the upper right-hand corner. Thus
these data are consistent with a thresh-
old cutoff that is located one sigma
above the mean of the noise distribu-
tion.

Of course, a determination of the
level at which a threshold may possibly
exist is neither critical nor useful. A
threshold well within the noise distri-
bution is not a workable concept. Such
a concept, since it is inconsistent with
the correction for chance, complicates
rather than facilitates the mathematical
treatment of the data. Moreover, a
threshold that is low is, for practical
purposes, not measurable. The forced-
choice experiment is a case in point;
the observer conveys less information
than he is capable of conveying if only
a first choice is required. That the
second choice contains a significant
amount of information has been dem-
onstrated; auditory experiments have
shown that the fourth choice conveys
information (Tanner et al., 1956).
Thus it is difficult to determine when
enough information has been extracted
to yield a valid estimate of a low
threshold. In addition, the existence
of such a threshold is of little conse-
quence for the application of the deci-
sion model—for example, yes-no data
resulting from a suprathreshold crite-
rion depend upon the criterion but are
completely independent of the thresh-
old value.

One of the major reasons for our
concern with the threshold concept is
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that this concept supports several com-
mon psychophysical procedures that
are invalidated by the results we have
described. The correction for chance
success has already been mentioned as
a technique that stems from a high
threshold theory, and one that is in-
consistent with the data. This correc-
tion is frequently applied to data col-
lected with the method of constant
stimuli. It is used implicitly whenever
the threshold is denned as the stimu-
lus intensity that yields a probability
of correct response halfway between
chance and perfect performance. The
method of adjustment and the standard
method of serial exploration are also
inappropriate, given the mechanism of
detection described above. When the
method of serial exploration is used
with the signal always present, or with
insufficient "catch trials" to estimate
the probability of a false alarm, the raw
data will not permit separating the
variation in the observer's criterion
from variation in his sensitivity.
Changes in an observer's criterion from
one session to another can be estimated
only if it is assumed that his sensi-
tivity has not changed, and conversely.
The same applies to data collected with
the method of adjustment.

To be sure, unrecognized variations
in the criterion are not important in
many psychophysical measurements for
they may be expected to contribute
relatively little variation to the com-
puted value of the threshold. Fairly
large changes in the criterion will affect
the threshold value by less than 3 db.
in the case of vision, and by no more
than 6 db. in the case of audition. This
degree of reliability is acceptable in
clinical audiometry, for example, in
which the method of limits is usually
employed. Neither would it distort
appreciably curves of the course of
dark adaptation. In many experiments,
however—in experiments concerned

with substantive as well as with theo-
retical problems—a reliability of less
than 1 db. is required, and in these
cases a knowledge of the criterion used
by the observer is essential.

To illustrate the problems in which
the threshold concept and its associated
procedures may have led to improper
conclusions, we may single out one of
current interest, that of "subliminal
perception." In most of the studies
of this phenomenon, the evidence for
it consists of the finding that subjects
who first report seeing no stimulus can
then identify the stimulus with greater-
than-chance accuracy when forced to
make a choice.14 We have mentioned
above as a typical result in psycho-
physical work that the forced-choice
procedure yields lower threshold val-
ues than does the yes-no procedure.
We have also suggested that this result
may be accounted for by the fact that
with the yes-no procedure the calcu-
lated value of the threshold varies di-
rectly with the observer's criterion, and
that a strict criterion is usually em-
ployed by the observers under this pro-
cedure. That a strict criterion is
usually used with the yes-no procedure
is not surprising in view of the fact
that observers are often instructed to
avoid making false alarm responses. It
is also likely that the stigma associated
with "hallucinating" promotes the use
of a strict criterion in the absence of
an explicit caution against false alarms.
Thus it may be expected that on many
occasions when an observer does not
choose to report the existence of the
stimulus, he nevertheless possesses
some information about it. It may be,

14 This procedure was used explicitly in
the earlier studies of subliminal perception;
several of these studies are reviewed by
Miller (1942). With minor variations, this
procedure also underlies many of the more
recent studies—see, for example, Bricker and
Chapanis (1953).



338 J. A. SWETS, W. P. TANNER, JR., AND T. G. BIRDSALL

therefore, that subliminal perception
exists only when a high criterion is
incorrectly identified as a limen.15

Having presented a theory of detec-
tion behavior and some detection ex-
periments, and having just discussed
the relationship of this work to "psy-
chophysics," it remains to articulate
with the title and the introductory
paragraph of this paper, to consider
the relationship of the work to the
study of "perception."

In principle, the general scheme we
have outlined may apply to perception
as well as to detection. It seems rea-
sonable to suppose that perception is
also a choice among Gaussian variables.
Consistent with the existence of many
alternatives in the case of perception,
we may imagine many critical regions
to exist in the observation space. This
space will have more dimensions than
are involved in detection—as we have
previously indicated, one less dimen-
sion than the number of alternatives
considered. We may presume, in per-
ception as in detection, that the boun-
daries of the critical regions are de-
fined in terms of likelihood ratio, and
are determined by the a priori proba-
bilities of the alternatives and the rela-
tive values of the decision outcomes.

It may also be contended that what
we have been referring to as a detec-
tion process is itself a perceptual
process. Certainly, if perceptual proc-
esses are to be distinguished from sen-
sory processes on the grounds that the
former must be accounted for in terms
of events presumed to occur at higher
centers whereas the latter can be ac-
counted for in terms of events occur-
ring within the receptor systems, then
the processes with which we have been
concerned qualify as perceptual proc-
esses. Since, in detecting signals, the

15 This analysis of the problem of sub-
liminal perception has been elaborated by
Goldiamond (1958).

observer's detection goal and the in-
formation he possesses about probabili-
ties and values play a major role, we
must assume either that signal detec-
tion is a perceptual process, or that
the foregoing distinction between sen-
sory and perceptual processes is of
little value.

Thus the thesis of the present paper
is, in one of its aspects, another stage
in the history of the notion that the
process of perceiving is not merely one
of passively reflecting events in the
environment, but one to which the
perceiver himself makes a substantial
contribution. Various writers have
suggested that our perceptions are
based upon unconscious inferences,
that sensory events are interpreted in
terms of unconscious assumptions
about their probable significance, that
our responses to stimuli reflect the in-
fluence of our needs and expectancies,
that we utilize cues in selectively plac-
ing sensory events in categories of
identity, and so forth. The present
view differs from these in regarding
the observer as relating his sense data
to information he has previously ac-
quired, and to his goals, in a manner
specified by statistical decision theory.
The approach from decision theory has
the advantage that it specifies the per-
ceiver's contribution to perception at
other than the conversational level; it
provides quantitative relationships be-
tween the nonsensory factors and both
the independent and dependent vari-
ables.

We submit then that the present
paper, although confined to detection
experiments, is aptly named. We may
view detection and perception as made
of the same cloth. Of course, signal
detection is a relatively simple per-
ceptual process, but it is exactly its
simplicity that makes the detection set-
ting most appropriate to a preliminary
examination of the value of statistical
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decision theory for the study of per-
ception. Because detection experi-
ments permit precise control over the
variables specified by the theory as
pertinent to the perceptual process,
they provide the rigor desirable in the
initial tests of a theory. Once these
tests are passed, the theory may be
extended and applied to more complex
problems. Recent studies within the
framework of decision theory include
the recognition of one of two signals
(Tanner, 1956), combined detection
and recognition (Swets & Birdsall,
1956), problems in which a single de-
cision is based on a series of observa-
tions (Swets, Shipley, McKey, &
Green, 1959), problems in which the
observer decides sequentially whether
to make another observation before
making a final decision (Swets &
Green, in press), and the recognition
of speech (Decker & Pollack, 1958;
Egan, 1957; Egan & Clarke, 1956;
Egan, Clarke, & Carterette, 1956; Pol-
lack & Decker, 1958).
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